Domain Name Chaining Attacks

Master Thesis
Author: Johannes Barnickel
Supervisor: Prof. Dr. Jorg Schwenk
Lehrstuhl fiir Netz- und Datensicherheit
Ruhr-Universitat Bochum

October 22, 2008

Abstract

This document is an overview over DNS protocol basics, its history, past and
current threats on DNS infrastructure, and means to prevent or hinder known
and unknown attacks. It reviews old and new measures to mitigate various
attacks on DNS. The name chaining attack model is discussed regarding
current DNS security measures.

Contents

1 Introduction 5
1.1 How DNS Works 5
1.2 Terminology 6
1.3 DNS Hierarchy 7
1.4 Resolution Path 8
1.5 Top Level Domains 9
1.6 Root Servers. 9
1.7 Importance of DNS 9
1.8 DNS Protocol History 10
1.9 Caching Name Servers 10
1.10 Network Neutrality 11
1.11 Notable DNS Big Players 12

1.12 DNS Best Practices 13

1.12.1 Gluelessness 14
1.12.2 Trusted servers 15

2 Attacking DNS 16
2.1 Imtentions 16
2.1.1 Denial of Service L. 16
2.1.2 Redirecting Web Traffic 17
2.1.3 Man-In-The-Middle-Attack with DNS 17
2.1.4 Censorship via DNS 17

2.2 Targets. 18
2.2.1 Client Name Resolution: Stub Resolvers 18
2.2.2 Client Visualization: IDN Homographs 19
2.2.3 Client Policies and Firewalls: Rebinding Attack 19
2.2.4 Gateways: Pharming 0L 21
2.2.5 Resolvers: Cache Poisoning Attack 22

3 DNS Security History 25

3.1 Cache Poisoning via Additional Info Section 25
3.2 BIND Sequential Transaction IDs 27
3.3 BIND Birthday Attack 27
3.4 Buffer Overflow in Resolvers 29
3.5 Weak Pseudo-Random Numbers First Discovered 30
3.6 Amit Klein’s Transaction ID Prediction in Resolvers 31
3.7 Weak Pseudo-Random Numbers in Windows Stub Resolvers . 33
3.8 Dan Kaminsky’s DNSRake Attack 33
3.9 Notes on Top Level Domain Wildcards 36
4 Name Chaining Attacks 39
5 Improving DNS Security 42
51 DNSover TCP 42
5.2 Cryptographically Secure Pseudo Random Number Generators 43
5.3 Source Port Randomization 43
5.4 The 0x20 Bit in Domain Names 44
5.5 IPv6band IPsec, 45

5.6 DNSSEC o 46

5.7 DNSCurve e 49
5.8 DNS Intrusion Detection 50
5.9 Conclusion: Entropy vs. Cryptography 5l
6 Summary 53
Bibliography 55

Chapter 1

Introduction

1.1 How DNS Works

DNS facilitates translation of human-readable names to IP route able ad-
dresses. Queries are of the kind "which IP corresponds to www.example.
com?" They are sent from the resolver to the recursor. Typically, the recur-
sor is a central server on the network or in the upstream network, i.e. at the

Internet service provider. Almost all recursors use caching techniques to save
bandwidth.

When a recursor does not have an authoritative entry for a name (i.e. it does
not own this name) and no cached entry for this name, it will itself become a
resolver and issue a query to another recursor - typically, less one subdomain,
e.g. example.com instead of www.example.com. The name server of example.
com is authorized to provide the IP address of www.example.com. So, our
recursor needs to find the name server of example.com. This is done by asking
the authoritative .com name server, which our recursor will probably know,
or ask the name server authoritative for .com, which is root. The IP addresses
of the root servers are pre-configured in all DNS recursor implementations
and change very rarely.

A nonce is used to identify and authenticate answers. All queries are accom-
panied by a 16 bit transaction ID that will also be included in the answer.

DNS servers listen on port 53 UDP and TCP and will send the reply packets
to the any source port that was used by the client to send the packet.

1.2 Terminology

Name servers that actively try to resolve names instead of only checking
for queried names in their caches are called resolvers. When a name server
recurses a query to another server, the first server is called recursor and the
second server is called upstream server or upstream resolver, with the root
servers at the top.

Some DNS protocol messages and their meaning:

message | meaning
g.cn A 7 | what is the IP address of g.cn?
g.cn A 4.1.1.1 | the IP address of g.cn is 4.1.1.1
g.cn NS 7 | what is the name server of g.cn?
g.cn NS 4.1.1.1 | the name server of g.cn is 4.1.1.1
g.cn NS ns.g.cn, ns.g.cn A 4.1.1.1 | the name server of g.cn is ns.g.cn, and
the IP address of ns.g.cn is 4.1.1.1

In the following examples, an attacker will often try to attack a domain called
g.cn. This is a valid domain (Google China) and was chosen because of space
considerations, especially in diagrams. The IP address 6.6.6.6 is often used
for the attacker himself, his DNS server or the target in forged DNS packets
which will be accepted by the server. The authoritative name server for
.cn will simply be called .cn and is often shown as an upstream resolver in
diagrams. In the diagrams, clients are end users who want to resolve names.
Transaction IDs of queries and replies are omitted in diagrams when they
are not attacked.

Example: Normal DNS Protocol Run
Client Resolver .cn
|:| g.cn A7 |:| |:|
@aehed
g.cn A7
g.cn A 4.1.1.1
to cache
g.cn A 4.1.1.1
g.cn A7
cac@
g.cn A 4.1.1.1
| | |

1.3 DNS Hierarchy

Although usually left out of display, every qualified domain name ends with a
dot, e.g. "www.example.com." is the same as "www.example.com", because
DNS software will automatically append the final dot. Authority zones are
separated by dots, with the top being on the right hand side.

zone | note
DNS root
.com. | zone for commercial entities, free for registration
example.com. | registered by someone within the .com zone
www.example.com. | a server within the private owned domain

DNS generates a tree structure with the final dot being root and the indi-
vidual machines being leafs.

1.4 Resolution Path

DNS is a distributed database, which is queried recursively. A typical query
by a client will be processed by the following instances (in this order) until
the first one provides an answer either from its cache or because the name is
within its authority.

e application caches: use their own tiny caches, often limited to less than
30 minutes, all other queries done by operating system

e local stub resolver in operating system: has its town small cache and

some static name definitions (e.g. localhost), queries DNS server as
configured by user or DHCP

e Router/Gateway: resolves names within the LAN, queries ISP for all
other names

e ISP /Carrier: knows names of own machines, queries authoritative server
in own top level domain

e Authoritative Registries: control all second-level domains, e.g. VeriSign
controls *.com and *.net, DENIC *.de, etc

e Root Servers: control top-level domains

1.5 Top Level Domains

Including test zones, there are 280 top level domains as of September 5, 2008.
Most of these are country code top level domains. The most recent additions
among the others are .aero, .asia, .biz, .cat, .coop, .edu, .gov, .info, .int,
Jjobs, .mil, .mobi, .museum, .name, .pro, .tel, .travel and the international-
ized domain name (IDN) top level domains for Arabic, simplified and tradi-
tional Chinese, Greek, Devanagari (Hindi), Kanji, Hiragana and Katakana
(Japanese), Hangul (Korean), Perso-Arabic (Persian), Cyrillic (Russian), He-
brew (Yiddish) that look like .xn—-0zwmb56d, .xn—zckzah, etc. in ASCIL.

The list of top level domains and the root servers that delegate them are
adminstered by IANA. Most top level domains are run by individual bod-
ies. Many of them are national cooperations of providers in the respective
country.

1.6 Root Servers

There are 13 root servers, six of them are distributed, which makes a total
of 123 root servers as of 2006. The root zone includes all top level domains
(.com, .net, .de, etc) with their name servers and provides glue records in the
additional info section to provide IP addresses to these servers.

Although top level domains change rarely, the root servers are exposed to
high traffic, around 15,000 queries per second [20]. Most of this traffic comes
from denial of service attacks or misconfigured clients with only 2% of the
queries being legitimate [19].

1.7 Importance of DNS

Because DNS facilitates name lookups for all network services it is one of the
most important network services. Many applications rely on DNS beyond

name resolving, e.g. e-mail uses a special resource record in DNS to facili-
tate message transport. As Amit Klein pointed out in his 2008 Black Hat
presentation [8], forged DNS replies can be used to acquire certificates with
forged identities, to receive others’ mails and many more vulnerabilities all
based on DNS or any service that uses DNS in a business process.

1.8 DNS Protocol History

Before the deployment of DNS; at first static lists of host names were used
to map names to IP addresses. These static lists are still in use for special
applications in modern systems, e.g. the hosts file in Windows. Later, the
ARPA Host Name Server Protocol (NAMESERVER) specified in 1979 as
IEN-116 [10] was used. Its flat topology proved unapt for the growth and
changes of the Internet. DNS was its predecessor.

DNS was first specified (RFC 882, 883) and implemented in 1983. BIND is
the most prominent implementation of DNS and was first released in 1985.
It was not rewritten until BIND 9 in September 2000.

The DNS specification has been revised a number of times, but the general
principle has not been changed since 1983. A security extension to DNS
called DNSSEC was first specified in 1999, revised several times and is still
not in general use today, although the deployment progresses slowly.

Cryptographic security extensions for DNS were first introduced in 1999 but
are still not in general use.

1.9 Caching Name Servers

Virtually every single resolver has its own cache, so as not to query the
same names in short intervals, thereby reducing load on the servers above
him. All authoritative replies contain a time to live field (TTL), telling the
caching servers how long to cache this entry before querying again. This

10

facilitates the ability to frequently change some entries while preserving low
computational cost and network load for other entries that do not change
frequently.

Short lived names with a low time to live and frequent update of IP addresses
are common for mobile services, where a device may change IP when roaming
between different wireless cells. There are also dynamic DNS services for
home users who want to get globally accessible host names for their home PCs
connected via dynamic [P connections such dial-up, DSL or cable modem.
These types of end user Internet connections often enforce disconnects every
12 or 24 hours which often causes the IP to change with each reconnect.

Seldom IP address updates are common for most servers, especially gateways
and DNS servers.

1.10 Network Neutrality

Net neutrality in general is the principle of treating all devices, parties and
connections and all types of content on a network equally and without dis-
crimination.

In 2003, three American home user Internet access providers delivered their
own search engine website with sponsored ads to their users when they en-
tered a non-existent domain name into their web browsers. This was done
by having a *.com entry in the resolvers for their customers. One of the
goals of this service was generating revenue from the ads displayed on the
search engine website. This type of service is sometimes called provider-in-
the-middle-attack. After three weeks this service was abandoned altogether
after protests from ICANN, but appeared again later in less prominent forms.

Net neutrality goes much further. There are more profitable ways to modify
their customers’ Internet access for the providers, such as including additional
own ads, replacing original ads with their own, slowing down or denying
access to websites of competing organizations, websites that criticize the
provider or especially bandwidth demanding services, such as filesharing.
Filtering all ads could be offered as a premium service.

11

There is an ongoing discussion about net neutrality with prominent support-
ers and objectors. In many countries there are laws or other regulations to
guarantee a minimum of net neutrality. Another example of lacking net neu-
trality is the blocking or obstruction of voice over IP telephony and instant
messaging on Internet capable mobile phones. Cellular network operators
want to prevent the use of these services so as not to lose revenue from tele-
phone calls made and short messages sent, because these traditional services
are often billed much higher in terms of traffic cost than mobile IP Internet
access.

1.11 Notable DNS Big Players

TANA (Internet Assigned Numbers Authority) is the governing body of IP
address allocation and DNS root zone management. [ANA is operated by
ICANN (Internet Corporation for Assigned Names and Numbers) under con-
tract to the United States Department of Commerce. Among other tasks,
IANA manages the root name servers’ data. IANA operates two top level do-
mains (.arpa for reverse DNS lookups and .int) and the zone root-servers.net
itself, denoting the root name servers. TANA also negotiates with other top-
level domain operators over DNS issues. There have been some politically
motivated proposals to decouple TANA from ICANN, but to no avail.

VeriSign is the registry of the two most popular generic top level domains,
.com and .net. VeriSign is a for-profit company in private hands. DENIC is
the registry of the most popular country code top level domain, .de. DENIC
is a non-profit cooperative.

ISC is the developer of BIND, which is the defacto standard implementation
of DNS. ISC is a public charity non-profit corporation and runs the "F" root
server. ISC also maintains the central Usenet moderators list and relays for
moderated groups. BIND is released under the BSD license (open source).

Dan Bernstein is a professor at the University of [llinois at Chicago. Bernstein
is a security researcher and the developer of djbdns, the second most popular
DNS implementation which has a strong focus on security. Bernstein has not
updated djbdns since 2001 but has only recently published a new standard

12

proposal for DNS security called DNSCurve. djbdns was placed in the pulic
domain in December 2007 after being released freely and open source before,
but explicitly without license.

Dan Kaminsky is a security researcher for IOActive and has discovered a
powerful new attack model on DNS in 2008. He coordinated a simultaneous
patch effort by many developers. Kaminsky is also known for his talks at the
Black Hat IT security conference.

1.12 DNS Best Practices

The following is a quick guide to operating a DNS server in a secure and
convenient manner.

There should be at least two DNS servers in a DMZ network segment. Using
two different implementations is a good idea. Many implementations can
easily be set up as a secondary server to a primary server running a different
implementation, e.g. djbdns can be easily set up to act as a secondary server
to BIND.

There should be an own machine for each DNS server on which no other
services run. This allows for more available source ports, easier maintenance
and predictable load behavior. These machines should run hardened oper-
ating system with default accounts and shares disabled, a strongly secured
administration account, a reasonably setup intrusion detection software and a
firewall in the same network segment. This helps mitigating denial of service
attacks that exhibit a specific pattern on the DNS servers.

The e-mail address entry for each zone needs to be correct for applications to
notify the administrator of irregularities. Caution must be taken when adding
CNAME entries. It’s best to avoid them whenever possible. CNAME entries
must not have names used by other RRs.

Split-horizon DNS (also called split-view DNS or split-brain DNS) is a con-
cept of resolving names in a different manner depending on the client’s source
address. It can be used to keep certain elements of the zone private, i.e. to

13

prevent resolving of internal names to outside clients. Split-horizon DNS is
a feature in most name server implementations but it can also can be imple-
mented by running separate servers on separate hardware with corresponding
firewalls, or by running separate processes on a single machine for separate
client classes. Queries should be restricted by client IP whenever possible.

In other setups it is prudent to allow access to the caching name server
only from within the own network but not from the Internet. Users from
the Internet only need to connect to the authoritative server which should
have recursion and caching deactivated. Access to the caching server can
be restricted by using network address ranges and other firewall rules. In
such a setup, Internet users cannot abuse the caching server, e.g. for cache
poisoning attacks.

Zone transfers are used to synchronize secondary resolvers to primary servers.
Although zone data is not generally considered private, zone transfers should
be limited so that they can be done only by other servers and clients who
actually need to do them, i.e. the secondary servers.

1.12.1 Gluelessness

Although referrals to name servers in foreign domains are allowed, this can
cause a circular dependency:

examplel.com NS ns.example2.com
example2.com NS ns.examplel.com

RFC 1034, 1537 and 1912 specify that glue records are unnecessary in this
situation. But without glue records, none of these domain names (exam-
plel.com, example2.com and all its subdomains) can be resolved, thus ren-
dering all services unreachable. This problem might appear suddenly when
one of these entries survived in the cache long enough and is later dropped
from the cache. With glue records, this problem can be avoided:

examplel.com NS ns.example2.com, ns.example2.com A 43.21.1.1
example2.com NS ns.examplel.com, ns.examplel.com A 43.21.1.2

14

Another obstacle in reaching the correct name server can be chains:

examplel.com NS ns.example2.com
example2.com NS ns.example3.com
example3.com NS ns.exampled.com
exampled.com NS 12.31.23.123

In this scenario, a large number of queries is required for name resolution,
delaying the query. Also, some resolvers may give up because of the large
number of queries and memory required to resolve such a name. Care must
be taken by DNS administrators to avoid such setups.

This is also true for CNAME entries (alias names) which should not point
to other CNAME entries. Therefore, when setting up a CNAME to another
name, the administrator should make sure the target name is not of the
CNAME type.

1.12.2 Trusted servers

A name server that as a name on a deep subdomain level, i.e. is a subdo-
main to a subdomain etc., must trust all its parent domains. All parent
domain name owners are able to influence to way the name server works up
to the point of easy denial of service, e.g. w3.org used to have a name server
w3csunl.cis.rl.ac.uk. Each of the owners of ac.uk, rl.ac.uk, and cis.rl.ac.uk
were able to change the way w3.org would be reached.

15

Chapter 2

Attacking DNS

2.1 Intentions

There are a number of motives behind attacks on DNS infrastructure. Most
of them do not aim at DNS itself but are means to accomplish other goals.
Some of these are discussed here.

2.1.1 Denial of Service

By sending a forged NXDOMAIN reply indicating that a domain does not
exist or by returning a wrong IP address for the domain or its web server
the attacker is able to prevent users from reaching a host name including
all services hosted there, e.g. websites and mail. Preventing visitors from
connecting to the site may have various motivations:

e blackmail, especially against event sites depending on availability over
a short period of time such as live coverage of sports or music, betting
sites, voting sites, auctions and any kind of event coverage in general

e sabotage, especially against competing websites or organizations

e vandalism, sometimes politically or culturally motivated

16

2.1.2 Redirecting Web Traffic

Answering to queries about popular websites with an A record that points to
an own web server can be used to redirect visitors of these websites. Attackers
may try to redirect traffic to an ad site to directly generate profit from the
large number of visitors.

It can also be used for phising, i.e. redirecting to a website with a login
function that looks similar to the real website and recording the login data,
possibly even asking for transaction authentication numbers.

Another use of redirecting web traffic is disinformation. This can be accom-
plished by redirecting traffic to a news site to a similar looking own website
with false stories or manipulated stock quotes. These techniques can be used
to manipulate stock quotes and votes.

2.1.3 Man-In-The-Middle-Attack with DNS

A man-in-the-middle attack with DNS means redirecting traffic to websites
(or other services) over a relay that allows monitoring traffic. This can be
used to tap personal information, login data and so on. Also, manipulation
of data is possible, e.g. for fraud in online banking.

2.1.4 Censorship via DNS

Censorship via DNS was not intended by the inventors of DNS, but facilitates
an easy way to prevent access to certain sites, especially for less skilled users.
Countermeasures include directly visiting the site’s IP address if it is known
and doesn’t change too often, choosing a different DNS server instead of the
one suggested by the ISP, using web proxies, proxy networks such as TOR
or even a VPN into an uncensored network.

Internet censorship has been implemented via DNS by a number of juris-
dictions, the most famous being China. The Golden Shield Project (some-
times also referred to as Great Firewall of China) employs DNS servers that

17

intentionally do not correctly resolve certain websites. Also, IP access to
non-censoring DNS servers is blocked.

DNS based censorship is also in use in Denmark, Finland, Germany, Italy,
Netherlands, Norway, Sweden and Thailand. The most common targets are
websites displaying child pornography, but in some countries also websites
containing pirated copyrighted material, general pornography (Denmark,
Germany), information about censorship (Finland), Nazi propaganda (Ger-
many) and foreign betting shops (Italy). Also, websites mocking the Crown
or state founder are prone to banning in their respective countries.

2.2 Targets

With DNS being a distributed database, attacks on DNS infrastructure can
aim at any element of this distributed database. Because DNS is a protocol
from the days when other network stations where not considered as possibly

hostile, there are many feasible ways to achieve goals associated with attacks
on DNS.

2.2.1 Client Name Resolution: Stub Resolvers

The pre-configured DNS resolvers in operating systems are called stub re-
solvers because they usually do not offer many features. Their only job is
forwarding application DNS requests to the DNS resolver at the upstream
connection. This is typically a server on the LAN, a hardware router or the
ISP’s DNS resolver. Some stub resolvers use short-lived caching.

Attacking a stub resolver by sending forged replies requires an attack scenario
where the attacker can cause the victim to issue a request. This can be done
by embedding code in a website or HI'ML e-mail message. Therefore, this
kind of attack has a very specific target, but little to no effect: There is
only one victim per successful attack and the effect is short-lived. Also, it is
difficult to find a scenario where an attacker can cause a request for a site he
does not control while at the same time ensuring the victim actually tries to

18

connect to the forged domain within a certain frame of time. Thus, direct
attacks on single resolving attempts on stub resolvers are rare.

Attacks on a stub resolver are more feasible on a LAN or in other situations
where the attacker is able to monitor traffic sent by the victim. This kind
of attack run by a gateway can be used for censorship to block certain host
names. This can done by simply issuing a fake NXDOMAIN reply. The
Golden Shield Project (great firewall of China) uses this technique.

2.2.2 Client Visualization: IDN Homographs

Internationalized domain names (IDN) can be used to trick a user into trust-
ing an unknown host name. This is achieved by registering domains that
look like well-known domains, but use one or more lookalike Unicode charac-
ters and are really different names. Although no user will visit these sites by
typing the domain or by visiting links on trusted websites, it can be used to
make links to untrusted websites look legitimate. The most popular attack
scenario would be fake e-mail messages from banking houses containing a
link that looks like the real bank’s website, but is actually a phising website.

Countermeasures include displaying international characters in puny code
when they are from a different language than the top-level domain, only dis-
playing IDN characters when they aren’t composed of multiple languages or
marking them with special background colors to allow the user to notice any
difference to the legit name. All of these countermeasures must be imple-
mented on end user client software and they all sacrifice some functionality
or convenience.

2.2.3 Client Policies and Firewalls: Rebinding Attack

Rebinding is an attack that employs legit DNS uses to circumvent the same
origin policy in web browsers |7]. The victim client must execute a script
made by the attacker for the attack to work, which is typically achieved by
iframes in websites, e.g. by an ad server. The scripts executed by the victim
client are typically written in JavaScript, Java or Flash. Also, the attacker

19

must be able to change the A resource record for a domain name quickly and
frequently. The name may be a name he legitimately owns.

The attack works by having the client resolve the name in control of the
attacker to different IPs in consecutive queries with a short (or zero) time to
live entry. The script will read and write data to and from the same name,
but the name will resolve to different IPs. These IPs may be internal IPs of
the victim’s LAN or external Internet IPs.

This can be harmful because it can change the scope of the IP without
violating the same origin policy of the web browser. Same origin policies
ensure that scripts within a frame in the browser can only read and send data
to themselves. This is achieved by verifying host names, not IP addresses.
Therefore, when the host name stays constant but the [P changes, the same-
origin policy is bypassed. By circumventing the same origin policy, it is e.g.
possible to steal cookies or to use the web browser as a proxy for scanning
its local network, because the attacker can also return internal IPs (e.g.
10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16) of the victim’s network and use
rebinding to access internal network resources from outside.

There are proof-of-concept attacks that turn a web browser into a proxy and
enable network scanning from outside the network by passing code to the
browser and using DNS to bypass same origin policies.

In the following example, DNS rebinding is used to bypass same origin poli-
cies in a web browser to forward the results of an attack on a host on the
LAN (IP 10.0.0.1, i.e. a file server) to an external attacker (IP 6.6.6.6). The
web browser executes a script sent by the attacker. The attacker needs to
control the name evil.me and must be able to change its A entry quickly.

20

Attacker

6.6.6.6

script

[]

DNS Rebinding Attack

DNS

Victim Browser

[1]

change evil.me

| execute script |

| attack

evil.me |

evil.me A 7

evil.me A 10.0.0.1

perform attack

LAN

attack results

tell evil.me

evil.me A 7

evil.me A 6.6.6.6

attack results

Countermeasures against rebinding attacks include defining a minimum set-
ting for the time to live (called DNS pinning), not allowing internal IPs to
be passed through the network’s name server and rejecting HT'TP requests

with unknown host headers [11].

2.2.4 Gateways:

Pharming is an attack to modify the client’s networking settings to query
the attacker’s DNS server instead of the client’s regular server. The attacker
may set his DNS server up in any way he likes, blacklisting or forging host
names as he sees fit. This is not an attack on the DNS protocol, but on

Pharming

insecure clients. DNS is used to achieve the attacker’s goals.

21

One common variant of this attack includes trojan software changing the
localhosts file so that certain names will be directly mapped to fixed IPs
without DNS querying, e.g. to prevent updating anti-virus software or to
redirect traffic from popular websites to others. Another variant is drive-by
pharming, which is scanning of WLANs from home Internet access routers
for default administrative passwords and changing their DNS server settings
to a server the attacker controls.

These attacks are serious because they have a long lasting effect on the client
and are hard to detect with common antivirus software. When not checked
carefully, the wrong IP for the client’s DNS server entries will remain even
after the trojan software was removed or after the router’s administration
password was changed.

2.2.5 Resolvers: Cache Poisoning Attack

The most serious attacks on DNS are cache poisoning attacks. In this attack
model, the target is a caching resolver, usually one for a network, e.g. at an
ISP. Success in this attack model means having the resolver accept forged
replies and absorbing them into his cache. All queries to this name arriving
later will be answered with the forged reply initially sent by the attacker.

The following diagram is an example of a cache poisoning attack on the
domain g.cn. It is meant to illustrate the principle of cache poisoning attacks
in general. Therefore, it is left open how attacker is able to convince the
resolver that his reply is legit. In a real attack, he would have to exploit a
certain implementation weakness or he would have to guess or predict the
transaction ID, the port number of the query done by the resolver and he
would need to know the source IP address of the upstream resolver queried
by the resolver.

22

Cache Poisoning
Attacker Resolver .cn Client
g.cn A7
gcn A7
forge packet
g.cn A 6.6.6.6
cache
g.cn A 6.6.6.6
g.cn A 4.2.2.2
ignore
g.cn|A 7
g.cn A6.6.6.6
] |] |

The attack is successful when the resolver accepts the attacker’s forged reply
and adds the entry into his cache. The real reply from the upstream resolver
arrives too late and is ignored.

There have been various scenarios to achieve cache poisoning. Usually, a
query is sent to the victim server querying him for the domain to be imper-
sonated. This will cause the server to send a query and to listen for replies.
The attacker must answer before the real reply reaches the attacked server.
This is a race condition. When the real reply arrives first, the attacker has
lost and cannot try again on the same name because it is already in the
cache. The attack cannot be repeated on the same name for as long as the
time to live in the real reply specifies.

To shorten this delay the attacker might try to crash the target server so that
it will restart and clear its cache, which is only possible in some scenarios.

23

The attacker may also issue a large number of queries to a series of names
until the cache is full and the oldest entries are dropped, which is difficult to
predict. The attacker can try to improve his chances to win the race condition
by running a denial-of-service-attack against the upstream resolvers along the
legitimate resolving path, thus delaying the real reply.

Other improved cache poisoning attacks detailed later use collision attacks
(birthday paradox) or exploit predictable transaction IDs.

24

Chapter 3

DNS Security History

With DNS around since 1983 and the general complexity of the distributed
database that composes DNS, there have been many ways to attack DNS.
Some of these are exploits of disregardful implementations, some apply gen-
eral cryptographic attacks, others exploit protocol design flaws.

3.1 Cache Poisoning via Additional Info Sec-
tion

In 1993, Christoph Schuba discovered that entries in the additional infor-
mation section in DNS replies can be used for cache poisoning in BIND.
In this scenario, an attacker would query the victims’ resolver for an IP
of a domain he controls. The reply from his own server would contain an
additional info section with an entry such as www.examplevictim.com A
12.34.56.78. This would cause the victims’ server to add 12.34.56.78 as the
IP for www.examplevictim.com in his cache and deliver 12.34.56.78 as IP for
www.examplevictim.com to all his users. This effect is called cache poison-
ing, because unauthorized entries are updated into the cache. The effect is
much greater than forging replies from a resolver to a single user because it
affects all users of the poisoned resolver, e.g. all clients of the ISP. The poison

25

remains on the server for as long as the TTL specified while the attack itself
only takes two packets.

Cache Poisoning with Additional Info Section
Attacker Resolver Client

[] [] []

evil.me A 7
evil.me A 7
evil.me A 6.6.6.6, g.cn A 6.6.6.6

evil.me A 6.6.6.6

g.cn A7
g.cn A 6.6.6.6

This attack was fixed by the introduction of bailiwick checking for the ad-
ditional info section. Entries that are in-bailiwick, i.e. belong to the same
domain as the authoritative answer in the answer section would be adopted
into the cache, all others are considered out-of-bailiwick and would be ig-
nored.

Therefore, an authoritative answer to www.example.com that also contains
additional info for mail.example.com and ns2.example.com would have all its
information added to the cache, but an entry to www.other.com would be
ignored. However, the additional info section has later been used for more
sophisticated attacks.

The most prominent of these attacks occurred in July 1997 when Eugene
Kashpureff, President and chief technical officer of AlterNIC, used these cache
poisoning techniques to redirect all visitors to www.InterNIC.com to Alter-
NIC’s website. This attack was a political statement. Eugene Kashpureff was
arrested for it and fined with criminal charges. The attack targeted BIND
resolvers that where not yet patched to check bailiwicks in the additional

26

info section as mentioned above. The attack gained some notoriety because
of its large impact and the strict law enforcement against Kashpureff.

3.2 BIND Sequential Transaction IDs

In the second half of 1997 DNS security was becoming a more interesting
issue with the Kashpureff case in the news. CERT discovered sequential
transaction IDs in BIND in August 1997. BIND would issue transaction
IDs sequentially (1, 2, 3, 4, ...). This was considered insecure, because an
attacker could assemble and send a UDP packet with forged sender IP and
correctly calculated transaction ID, which would cause a resolver to accept
forged authoritative answers. Thus, cache poisoning was possible again.

This issue was quickly fixed in many implementations with random numbers
introduced into DNS resolvers. Some used the operating systems’ functions
for generating random numbers, others used own implementations.

3.3 BIND Birthday Attack

A birthday attack on DNS was first mentioned in July 2001 by Dan Bern-
stein and detailed in 2002 by Vagner Sacramento. Sacramento discovered
that BIND sends multiple recursive queries for the same name simultaneously
when asked for the same domain a number times simultaneously. Sending
100 queries about www.example.com would cause BIND to send 100 queries
about www.example.com to its upstream resolver, each with different trans-
action IDs but otherwise identical. When sending a flood of forged replies the
high number of possible legitimate replies increased the attacker’s chances.
This attack is one of the birthday paradox type: It is not important which of
the questions asked by BIND is answered, as one single corresponding reply
is enough for the resolver to accept the forged packet.

The attacker must send a sufficient number of forged replies before the first
legit reply arrives. Success probability with this type of attack is 50% after

27

300 packets and almost 100% after 700 packets. Conventional attacks achieve

only 1.1% after 700 packets.

g.cn A 7 (5x)

Attacker Resolver

[] []

BIND Birthday Attack

spoof IP

g.cn A 6.6.6.6 ID=1

g.cn A 7 ID=12

g.cn A 7 ID=3

g.cn A 7 ID=91

g.cn A 7 ID=14

g.cn A 7 ID=37

g.cn A 6.6.6.6 ID=2

g.cn A 6.6.6.6 ID=3

g.cn A 6.6.6.6 ID—=4

g.cn A 6.6.6.6 ID=5

g.cn A 1.1.1.3 ID=12

g.cn A 1.1.1.3 ID=3

g.cn A 1.1.1.3 ID-01

g.cn A 1.1.1.3 ID=14

g.cn A 1.1.1.3 ID=37

.Cn

[]

Client

[]

ignore
g.cn|A ?
g.cn A[6.6.6.6
]]]

In the example, the attacker sends five queries to a DNS resolver about the
domain g.cn which it wants to poison. The resolver issues five queries to

his upstream server, which is the .cn authoritative server.

28

Each of these

five queries has a different transaction ID. The attacker immediately starts
sending forged reply packets with increasing transaction IDs and an IP he
would like to add on the resolver’s cache for g.cn, which is 6.6.6.6. The real
upstream resolver replies too slow and the cache poisoning succeeds. Queries
issued later by clients of the victim resolver will receive the forged reply.

BIND was fixed so as not to send multiple queries at the same time for the
same query. The lesson learned from this attack was not to use multiple
random numbers for a single transaction, a principle that applies in general
software engineering.

3.4 Buffer Overflow in Resolvers

In June 2002, Joost Pol discovered a buffer overflow vulnerability in the
gethostbyname() function in libresolv. The libresolv library is based on BIND
and is used by Unix C programs to resolve host names into IP addresses.
Buffer overflow vulnerabilities are typical for C programs and are often caused
by careless string handling. Exploiting such a vulnerability achieves the
ability for an attacker to crash the application or to cause the execution of
code injected by the attacker on the vulnerable machine with privileges of
the vulnerable application process. Because resolving names is a feature used
by almost all network services, the buffer overflow vulnerability in the library
affected all of them.

This vulnerability was fixed in BIND 4.9.9, 8.2.6, 8.3.3, and 9.2.2. Before
releasing the update, ISC (developers of BIND and libresolv) claimed that
a caching server between client and recursing server would be a workaround
against this issue, which was disputed by Dan Bernstein. Two months later,
Bernstein’s claims were acknowledged by ISC. [2]

In April 2007, a similar vulnerabily in Microsoft DNS server was reported
[17]. A patch was released one month later after exploits appeared.

29

3.5 Weak Pseudo-Random Numbers First Dis-
covered

In his 2001 paper "Strange Attractors and TCP/IP Sequence Number Anal-
ysis" [21], Michal Zalewski of Bindview analyzed and compared the output
of random number generators of different operating systems by observing
the distribution of TCP sequence numbers in 3D space and applying some
mathematical analysis. His conclusion was that most operating systems use
weak random number generators and that prediction of the next number in
a sequence is often possible with feasible effort, i.e. less that 1,000 monitored
numbers.

Although primary analyzing 32 bit TCP sequence numbers, his results also
apply on DNS transaction IDs, which are only 16 bit in length and there-
fore much more vulnerable. Transaction IDs are used as the single means
of authentication in the DNS protocol. An attacker who can predict trans-
action IDs can force a DNS recursor to accept forged replies, because he
cannot distinguish between real and forged replies. Zalewski also analyzed
the transaction IDs of glibc 2.1.9x, Microsoft DNS server and Solaris 7 libc
resolver, all of which expose vulnerable pseudo random numbers. Zalewski
could not find weaknesses of this kind in BIND.

The results of Zalewski’s research and the tools he released are applicable to
any network service using random numbers.

In 2003, Joe Stewart used Zalewski’s tools to test popular DNS server soft-
ware. He found BIND 8.4.3 to be vulnerable with a 100% chance to correctly
guess the next transaction ID after observing three transaction IDs. BIND
9.x relies on the host operating system, which was Linux 2.4.19 at the time
of first testing. A 20% chance after 5,000 observed packets is considered to
be a fairly good, but not perfect result. Testing djbdns showed a 30% chance
after 5,000 observed packets, slightly worse than BIND 9, but nullified by the
fact that djbdns uses source port randomization, so an attacker has to guess
not only the transaciton ID, but a pair of both transaction ID and source
port, which would considerably prolong an attack.

30

3.6 Amit Klein’s Transaction ID Prediction in
Resolvers

In 2007, Amit Klein analyzed the distribution of various DNS resolvers’ trans-
action IDs in a manner similar to Michal Zalewski but also with source code
analysis. Klein found out that there are weak random number generators in
BIND, Windows DNS [13] and many other DNS resolver implementations.

To generate random numbers, BIND 9 used two LFSRs with 32 bit length
each, constant feedback taps for all installations and 16 output bits in each
cycle. LFSRs in general are not too bad of a choice for pseudo random num-
bers when a single output bit is used every round. However, BIND used 16
output bits per round. This was such a big mistake that different clocking
of the LFSRs could not prevent calculation of the full internal state of both
LFSRs after observing a sequence of outputs, thus making the random num-
bers completely predictable. Therefore, the transaction IDs were predictable
after observing a small number of transaction IDs [14].

In the attack, the attacker first queries the victim resolver about a num-
ber of domains the attacker controls to record the sequence of transaction
IDs from the queries to the attacker’s name server. Then he uses this data
to calculate the next few transaction IDs, queries the victim server for the
domain name he wants to forge and immediately sends forged replies with
the calculated transaction IDs and a forged sender IP matching that of the
upstream resolver.

In a real attack, the attacker’s DNS would send more than one forged packet
to increase his chances because he cannot prevent other users from querying
at the same time, e.g. packets with IDs 8, 10, 12 and so on. In this scenario,
the attacker and his DNS server may be a single station as shown in the
chart. It is crucial that the attacker can observe transaction IDs issued by
the target resolver. The easiest way for him to achieve this is querying for
names he controls.

31

Transaction ID Prediction Attack

Attacker Resolver Upstream Resolver Client

[] [] [] []

l.evilme A ?
l.evilme A ? ID=2
l.evilme A 1.0.0.1 ID=2
l.evil.me A 1.0.0.1

2.evil.me A 7
2.evilme A 7 ID—4
2.pvil.lme A 1.0.0.2 ID=+4
2.evil.Lme A 1.0.0.2

3.evilme A 7
3.evilme A 7 ID=6
3.evil.Lme A 1.0.0.3 ID+6
3.evil.Lme A 1.0.0.3

guess next IDs

www.g.cn A 7

www.g.cn A 7 ID=8§
www.g.cn A 6.6.6.6 ID3+=8

| cache |

wyww.g.cn A 3.1.4.1 ID+8

| ignore |

www.g.cn A 6.6.6.6

www.glcn A 7
www.g.cn| A 6.6.6.6

This attack does not require packet interception. There is one race condition
where the attacker’s forged packet must arrive at the resolver before the

32

legit packet from the upstream resolver. The attacker must be able to inject
packets with forged sender IP, which many ISPs allow. The attacker needs
to know the IP address of the upstream server, which would typically be that
of the top level domain authoritative server. Like all cache poisoning attacks
so far, this attack is only feasible with a host name that is not already in the
cache.

Patches to improve the pseudo random number generator in BIND and other
implementatios were released shortly thereafter, although cryptographically
secure pseudo random number generators were already known and standard-
ized years before. Some researchers even claim that the problem was known
for ten years before it was fixed e.g. in Microsoft DNS Server [12].

3.7 Weak Pseudo-Random Numbers in Win-
dows Stub Resolvers

In March-May 2007, Amit Klein discovered predictable transaction ID gen-
erators in the stub resolvers of the latest Microsoft Windows 2000/XP /Vista
version [15]. Microsoft issued fixes one full year later in March 2008 for Win-
dows Vista and in April 2008 for Windows 2000 and XP between the regular
hotfix release dates (so-called patch days), only days before Amit Klein would
disclose full information about the weakness to the public.

3.8 Dan Kaminsky’s DNSRake Attack

In 2008 Dan Kaminsky developed a new attack model for a cache poisoning
attack. His implementation DNSRake would not try guessing the correct
transaction ID for a single query or a series of queries about www.example.
com, but to a series of subdomains such as 1.example.com., 2.example.com,
3.example.com etc. One of the advantages of this approach is that these do-
mains names will probably not already be in the cache, unlike www.example.
com if it is a popular website. After not succeeding with guessing the trans-
action ID on the first attempt, the second attempt on 2.example.com can

33

be started immediately, without having to wait for the time to live of the
cached reply to www.example.com to expire. Also, queries for non-existent
names take longer, thus delaying the real reply and giving the attacker better
chances to win the race condition.

For each query sent by the attacker he will also send one or more forged reply
packets with different transaction IDs. These packets redirect the recursor
to a name server with the name to be poisoned and an A entry for this name
pointing to the desired IP. When the transaction ID is eventually matched,
the victim recursor will honor the A entry for the assumed name server,
because it points to an entry within the same domain: 321.example.com is
considered in-bailiwick with www.example.com. The recursor supposes that
both names are controlled by the name server of example.com with witch
it supposedly has just exchanged packets. This is the same process as any
other name resolution.

The attacker’s chances to succeed are only one in 65,535 per forged reply
and query, but he can sequentially issue as many queries as he likes without
having to wait for the time to live to expire. Also, with more than one forged
reply packet per query, his chances increase per query. With 100 forged
replies per query arriving quicker than the legit reply at the recursor, his
chances increase to one in 655 per query. He will only need 328 queries with
100 replies each for 50% success probability. The attack can be successfully
executed on a typical home user connection in less then ten seconds if the
access provider allows forged sender IPs. As the attacker can sequentially
try as many subdomains as he likes, his chances for successfully matching
the transaction ID increase with every new subdomain.

In the following example, the attacker impersonates g.cn and convinces the
resolver that www.g.cn is 6.6.6.6 and the resolver adds this information to his
cache, serving it to clients who ask about www.g.cn later. Here, the attacker
always uses the same transaction IDs in his forged replies. He might just
as well use random numbers. There is no real difference in these variants
because the attacker has to guess new numbers for each query. Here, three
replies per query are used.

34

Attacker

[]

Dan Kaminsky’s DNSRake Attack

g.cn

[]

Cli

l.g.en A7

[]

ent

Resolver

[]

1.g.cn Al

7 ID=2

l.g.cn NS wf

'w.g.cn, www.g.cn A

6.6.6.6 ID=6

l.g.cn NS wyf

'w.g.cn, www.g.cn A

6.6.6.6 ID=T7

l.g.cn NS wyf

'w.g.cn, www.g.cn A

6.6.6.6 ID=8

1.g.cn NXD(

MAIN ID=2

2.gcn A7

2.g.cn A

7 ID=17

2.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=6

2.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=T7

2.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=8

2.g.cn NXDO

MAIN ID=17

3.gcn A7

3.g.cn A

7 ID=12

3.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=6

3.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=T7

3.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=8

3.g.cn NXDO

MAIN ID=12

4.g.cn A7

4.g.cn A

7 ID="7

4.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=6

4.g.cn NS ww|

w.g.cn, www.g.cn A

6.6.6.6 ID=T7

4.g.cn NS wy

'w.g.cn, www.g.cn A

6.6.6.6 ID=8

4.g.cn NXD(

MAIN ID=7

www.g.cn A 7

ore

www.g.cn A 6.6.6.6

35

Since handling the additional info section cannot be made more restrictive
without breaking DNS in situations where glue records are required and
because even a perfect random distribution of transaction IDs does not help,
there has been an effort among DNS recursor developers to add source port
randomization to their implementations. This is the only known means to
delay this attack to a point where it is less threatening. With source port
randomization, the attacker also has to guess the correct source port, which
reduces his chances from one in 65,535 to one in 4 billion per packet.

Because of the severity of this new attack model, Kaminsky did not publish
details and worked with vendors to release patches. All details of the attack
were finally made public in August 2008, 30 days after the patches were
released. There were some deployment issues with the patch when firewalls
restricted or actively reduced the number of available source ports. Kaminsky
himself considers source port randomization as a stopgap remedy with the
DNS protocol still being in need of change, especially because of steadily
growing bandwidth. So far, only DNSSEC is considered as a sustainable
remedy.

An exploit named Evilgrade soon appeared which poisoned DNS entries to
popular automatic software update URI’s and delivers code of the attackers’
choice instead of the real software updates. Many automatic software update
functions in software download patches from sources only verified by their
hostnames and then execute them automatically. With the poisoned entries
and an according setup of own download servers, the attacker is able to
execute code (i.e. install malware) on all clients who use both the poisoned
name servers and the automatic updating software targeted by the attacker.

3.9 Notes on Top Level Domain Wildcards

Since 2003, so-called provider-in-the-middle attacks became popular: Home
user Internet access providers deliver a own search engine website with spon-
sored ads to their users when they try to visit a non-existent domain name
with their web browsers. This is done by having a *.com entry in the resolvers
for their customers.

36

e VeriSign, the authoritative registry operator for .com and .net, redi-
rected all queries to non-existent domains to their own website called
site finder, which displayed ads for VeriSign and some ad partners.
The catch-all registration in .com and .net broke several services such
as automatic checking of domain existence which is e.g. used in fighting
spam. Patches for DNS resolvers ignoring these wildcard domains were
quickly released. Because of the protest of ICANN VeriSign abandoned
SiteFinder after three weeks.

e Paxfire does essentially the same, but is not an authoritative registry.
Some ISPs cooperate with Paxfire and redirect *.com and other top-
level domain wildcards to Paxfire. Their users’ browser will show a
Paxfire ad site when trying to visit a website on a non-existent domain.
VeriSign later also offered a service for ISPs to redirect non-existent
subdomains.

e In 2006 the .cm (Cameroon) registry issued *.cm to an ad site, redi-
recting some mistyped .com domains. ICANN does not have authority
over national TLDs, therefore, this service is still active today.

e When an user enters a non-existent domain name into Microsoft Inter-
net Explorer’s address bar, he is by default automatically redirected to
Microsoft’s MSN search engine with the entered address as the search
query string. This can be deactivated or changed to other search en-
gines in Internet Explorer’s configuration. MSN’s biggest rival (Google)
is not in the list of preconfigured search in engines although it is much
more popular.

e In 2008 many ISPs in the USA return ad sites for nonexistent subdo-
mains to existing second level domains, e.g. ww.example.com. These
sites have ad slots filled by others companies. This is considered a se-
curity risk, as the ad provider would be able to read and modify the
cookies of the parent domain, e.g. example.com, which would also be
used by www.example.com. This can be a way to steal personal data
such as e-mail address, username or password. Care must be taken by
the operator of any web service with personal data in cookies to prevent
this [9].

There also are two known provider-in-the-middle attacks in Germany:

37

e In October 2008, Hansenet starting forwarding traffic from AliceDSL
clients. All non-existent domain queries starting with www. would be
redirected to 64.236.172.120, which is an AOL search engine website.
This service is also opt-out only, with the link to opt-out reachable
from the search engine website.

e Kabel Deutschland redirects users to a search site called "Kabel Deutsch-
land DNS Assistance" full of Google ads when they try to visit a non-
existent website.

Many users are upset about these services, because they often are not opt-
in. Also, they ignore the settings in the users’ web browsers, which would
usually redirect to a user defined search engine or display an error message
when trying to visit a website with a non-existent domain name. These
wildcard domains may also be a security problem because of the embedded
ads, which are often served by less trustworthy instances and the cookie
stealing/modifying issue mentioned above.

In January 2001, yahoo.com and microsoft.com were accidentally hijacked by
a hosting company which published a *.com wildcard resource record that
spread to other resolvers. As Dan Bernstein points out, technically, these
entries should be considered as poison when sent by anybody else than the
real authority, which is VeriSign for .com [1].

Spreading a wildcard RR about a top level domain to resolvers on other
systems is not possible anymore because of better bailiwick checking that
replaced BIND’s credibility system. The credibility system would allow au-
thoritative name servers that seem legit to inject information beyond the
authority into the cache of a recursor.

38

Chapter 4

Name Chaining Attacks

Name chaining attacks are a superclass of cache poisoning attacks [5]. There-
fore, an attacker must be able to modify traffic or to guess source port and
transaction ID of a query and beat the real resolver in a race condition. Name
chaining attacks are characterized by having the resolver query more names
chosen by the attacker. The intention is insertion of more forged data into
the resolvers cache because it can be placed in both the authority and the
answer section. So far, these attacks are hypothetical.

Bailiwick checking was introduced to prevent cache poisoning by checking
if all data returned in a reply is within the authority of the sender. Most
implementations execute bailiwick checking by testing whether the domain
queried is trying to establish information about itself or about a subdomain
of itself and discard all other information. This prevents cache poisoning via
the additional info section and therefore, name chaining via redirects too.

In the following example an attacker causes a resolver to query "evil.me A
7" then returning "evil.me CNAME g.cn, g.cn A 6.6.6.6". The resolver
would not accept the additional info section "g.cn A 6.6.6.6", because g.cn
is considered out-of-bailiwick to evil.me. Therefore, evil.me has no authority
over the domain g.cn or any of its subdomains.

39

Bailiwick Checking prevents Cache Poisoning

Attacker Resolver .cn
evil.me

evil.me A 7

evil.me A 7

evil.Lme CNAME g.cn, g.cn A 6.6.6.6

ignore g.cn A

g.cn A7
g.cn A 4.2.2.2
to cache
evilme A 4.2.2.2
] I]

In 2008 Dan Kaminsky found an attack model (discussed earlier) where the
attacker could cause the victim to issue a series of queries for subdomains of
the target domain. Each new query would increase the chances of randomly
matching the transaction ID. However, it is unclear whether this attack model
can be called name chaining, as it relies on a single forged reply packet to be
accepted by the resolver.

Name chains are also used by attackers who cause the victim to sequentially
query a number of names the attacker owns with a single query. This is
achieved by using redirections in the answer section of each reply.

40

several alias names

Attacker Resolver
evil.me

evil.me A 7

evil.me A 7

evil.Lme CNAME 2.evil.me
2.evil.me A 7
2.evil.me CNAME 3.evil.me
3.evilme A 7
3.evil.lme CNAME 4.evil.me
4.evil.me A 7
4.evil.me CNAME 5.evil.me

This technique can be used for examination of the resolver’s behavior, e.g.
transaction ID prediction as performed by Amit Klein (discussed earlier).

Translating a domain name via several alias names into a wrong IP address is
not possible with a prudent name server implementation. Somewhere along
the resolution, the answer would have to leave the attacker’s authority for
such an attack to work. This would be detected by recent resolver implemen-
tations and those entries would be ignored. There are no known applications
of name chaining attacks in DNS.

41

Chapter 5

Improving DNS Security

There are a number of ways to prevent known attacks on DNS which may also
hinder unknown attack models. Some of these methods are implementation
guidelines, others change the DNS protocol. Generally, there is a trade-off
between compatibility and security.

5.1 DNS over TCP

By default, DNS uses UDP for all queries and TCP for queries that exceed
512 byte. The use of TCP for all queries would make IP source forgery
almost impossible, but it would also create additional load on the DNS server,
because the state of the connection must be stored in the servers memory.
Network load would also increase because a TCP handshake requires three
packets to be sent before any payload is transmitted and four packets to close
the connection. As a typical DNS query between two party is only one UDP
packet in each direction, the use of DNS over TCP would create 4.5 times the
network traffic. Also, denial of service attacks would be made easier because
the server has to leave the ports open and wait for packets to arrive until a
time-out occurs.

TCP headers contain a 32 bit segment ID which is effectively a means against
forged replies from an attacker who cannot receive the actual queries. How-

42

ever, the use of TCP cannot prevent man-in-the-middle attacks. Also, many
deployed DNS resolver implementations ignore TCP queries when they have
not issued a truncated UDP packet before, which is the signal for the client
to query again with TCP. Therefore, mandatory DNS over TCP is not con-
sidered a good choice in most networks.

5.2 Cryptographically Secure Pseudo Random
Number Generators

The numbers used as transaction ID need to be unpredictable. This is
achieved by the use of cryptographically secure pseudo random number gen-
erators (CSPRNGs). CSPRNGs are well-researched and there are various
standardized functions for them since the 1980s, which do not allow an ob-
server to (easily) recognize the internal state of the CSPRNG, thus preventing
prediction of the next random numbers used. In 1994 an RFC was published
on this topic [6] that called for the use of true random data in secure random
number generators, i.e. randomness based metered hardware values. These
techniques were later implemented in the Unix random number generator
/dev/random.

Still, many developers failed to recognize the importance of secure pseudo
random numbers. The most popular DNS server implementations have added
CSPRNGs as late as 2007. Weak random number generators in client im-
plementations are still common in 2008. A patch for Windows DNS stub
resolvers was released only recently.

5.3 Source Port Randomization

Source port randomization uses the fact that an answer to a query will always
be sent to the port it originated from by using random numbers as source
port. It is a means to hamper forging of DNS query reply packets. Therefore,
it cannot render an attack impossible, the attack just becomes more expensive
for the attacker. Instead of guessing one correct transaction IDs among

43

65,535 possible values, the attacker has to guess 65,535 possible transaction
IDs and the number of ports the revolver is sending packets from - up to
65,000. Since both transaction ID and source port must be guessed correctly
at the same time, this requires guessing one correct pair among 65,535 times
the number of ports - 2.1 billion packets for 50% chance of success. In

practice, this renders all known attacks impossible on networks slower than
a fast LAN.

Dan Kaminsky’s Chaining Attack can be executed on a Gigabit Ethernet
LAN in the course of 10 hours even if the victim resolver is using full port
randomization. This is not considered critical since an attacker within the
LAN could perform other more threatening attacks, e.g. man-in-the-middle
via ARP poisoning or DHCP poisoning. He could then intercept and modify
all DNS traffic, act as a DNS resolver himself or act as a gateway to alter
incoming authoritative replies. Also, it is considered difficult to send such
amounts of data even on a Gigabit Ethernet LAN without alerting even basic
intrusion detection software or suspicious users.

Port randomization was uncommon in resolver implementations with djbdns
being the most notable one. However, on July 8th, 2008 several develop-
ers released patches for their implementations simultaneously to introduce
port randomization. This joint effort was driven and coordinated by Dan
Kaminsky to mitigate his newly found attack model (discussed earlier).

Even when an attacker could find a new birthday paradox-type attack sce-
nario on a source-port randomizing resolver, he would have to send too many
packets for a home network connection to have a realistic chance to succeed
in a race condition, i.e. without suppressing the real reply.

The same that has been said about the randomness of the transaction ID
applies for the source port, too. Good random numbers are required to
achieve the full increase in security.

5.4 The 0x20 Bit in Domain Names

0x20 as described by Vixie and Dagon in an Internet draft [18] in March
2008 is a technique to make queries more identifiable, just like source port

44

randomization and cryptographically strong random query IDs. 0x20 exploits
the fact that DNS resolvers ignore case by protocol standard but almost all
known implementations retain case because they simply copy strings. A
query about WWW.EXAMPLE.COM will be treated the same as a query
about www.example.com, but both will have different reply packets with the
upper- and lowercase letters still intact just like in the original query. This
also applies for mixed case, such as wWw.eXAMmpLe.COm. The effect is
a kind of covert channel that results in one bit of additional entropy for the
query per character in the domain name. 0x20 is named like this because
it is the bit mask of the difference in upper and lower case letters in ASCII
encoding (A=0x41, a=0x61).

An attacker who cannot guess the combination of upper- and lowercase letters
in a domain name in a query cannot do better that to send forged answers
with all possible combinations of upper- and lowercase letters, which costs
2"~ (with n the number of letters in name) attempts on average.

Because retaining but ignoring case is standard in most implementations in
use, this approach works with nearly all implementations already deployed.
DNS server implementations need to randomize case to take advantage of
additional security in queries sent by themselves. This is not considered as
a hard task for software developers.

The biggest disadvantage is the dependence on the number of letters in a
domain. alllllll.com would only receive four additional bits of entropy,
www.example.com 13 bits, meaning 2371 = 4096 the average effort for an at-
tack. The shortest commonly used domain name is probably g.cn for Google
China, which would only gain three bits, meaning four times the average
effort for an attack.

The 0x20 Internet draft also suggests methods for dealing with servers not
retaining case to be added to the DNS protocol specification.

5.5 IPv6 and IPsec

[Psec (Internet Protocol Security) is a suite of protocols for securing IP com-
munications. It provides authentication and/or encryption for each packet

45

transmitted. This would increase security for DNS and prevent attackers
from forging packets even when they are able to guess transaction ID and
source port. IPsec also facilitates cryptographic key establishment.

IPSEC was introduced in 1995 with RFCs 1825 and 1829, redefined in 1998
with RFC 2401 and 2412 and redefined again in December 2005 with RFC

4301 and 4309, with each redefinition being incompatible with its predecessor.
With the last update, IPSEC was relabeled IPsec.

[Psec is a mandatory component for IPv6, but can be used with [Pv4, too.

Because of the slow deployment of IPv6, today IPsec is more often used in
IPv4.

IPv6 is a replacement for IPv4. It was first defined in 1996 with RFC 2460
and designed to add some features IPv4 was missing. As IPv4 was not
originally meant to be used on a network with hostile parties, it lacks security.
Another shortcoming is the limited number of available addresses. Without
NAT, only 232 = 4 billion hosts are possible in IPv4, and many large address
blocks of 22* = 16.8 million addresses have been delegated to universities and
cooperations before the rapid growth of the number of Internet users since
the late 1990s. This has become a burden for emerging markets, especially
Asian Internet service providers. IPv6 provides 2'2® addresses and IPsec,
but isn’t deployed widely and creates connectivity issues for networks not
aware of IPv6. Although most current network devices and applications are
IPv6-capable, it is not deployed yet on a wide basis, because of the cost of
replacing old devices and installations.

5.6 DNSSEC

DNSSEC (also called Secure DNS) is an extension to DNS that facilitates
origin authentication of DNS data, data integrity and authenticated denial
of existence. This would make DNS secure to the point where an attacker
cannot forge packets without breaking strong cryptography or using a fall-
back to legacy DNS. DNSSEC cryptographically binds query replies to their
query IDs, so not even man-in-the-middle attacks in scenarios where the at-
tacker controls the channel would be possible anymore. The attacker cannot

46

succeed because he cannot create valid digital signatures without knowledge
of the private key of the real server.

Digital signatures in DNS reply packets are created for each resource record.
Signatures are verified against the public key of the sender, which can be
exchanged via DNSSEC queries, which are signed by the parent domain.
Therefore, each new client is required to already have a list of trusted keys.
There also is some controversy about who is to hold the private key for the
root zone, .com and other important top-level domains because of the power
and responsibility that comes with this task.

The recommended key sizes for DNSSEC are 1024, 1300 and 2048 bit for
low-value, medium-value and high-value domains respectively when the key
is rolled over once a year. Value is depending on the view of the zone owner.
Typically, higher leafs in the DNS tree are considered more valuable [16].
Greater key lengths increase computational load on the parties involved,
smaller key sizes than 1024 are considered insecure. Key rollover on a regular
basis is suggested to prevent attackers from breaking a key by using long-
running calculations.

DNSSEC was first standardized in RFC2535 in March 1999 and revised by
RFC4033 in March 2005 because of scaling issues. Although today most
resolver implementations support DNSSEC it is still not deployed widely
on public networks, because there are some technical and political concerns
regarding its large-scale use, many of them related to key management.

DNSSEC also introduces NSEC, a resource record (RR) for authenticated
denial of existence. It facilitates a resolver to signal a client that a domain
within his authority does not exist without need to calculate a signature
on-line. This avoids costly signature operations and helps avoid having the
private key on the same system. Since this reply needs a signature, the new
resource record NSEC was introduced. This resource record provides the
closest two existing names in the zone in canonical order, indicating that no
other names exists between them. However, this creates a new security issue
called Zone Walking or Zone Enumeration. The way NSEC works allows an
attacker to completely list the zone and monitor it for updates. The existence
of a public, complete listing of domains is often not desirable and in some
scenarios objectonable, e.g. when using DNS records to store personal data.
This data privacy issue is one of the main reasons why DNSSEC was not yet
widely deployed.

47

RFC4470 and RFC4471 released in April 2006 describe a method to dy-
namically create NSEC records and their signatures, thus preventing zone
walking. However, this method requires private keys to be stored on all
name servers on-line which limits its use to some special cases. Also, there
were no implementations.

The newly introduced NSEC3 resource record as described in RFC5155 in
March 2008 is another method to prevent zone walking. It uses hashed host
names instead of plaintext and therefore does not disclose any additional
zone data to an attacker. It preserves backwards compatibility as all imple-
mentations not aware of NSEC3 will not try to verify hashed host names but
simply consider the answer to be insecure. Some implementations already
use NSEC3 and all major implementations including BIND 9 are currently
adding support for NSEC3. Therefore, the zone walking issue seems to be
solved.

Signed top level domains are:

.bg since October 2007

.br has deployed DNSSEC and the .jus.br (Judiciary) domain has manda-
tory DNSSEC use

.cz deploys DNSSEC in September 2008

.pr has deployed DNSSEC in August 2006

.se was signed in 2005

There are about 1000 signed second level domains in other TLDs, many of
them within .ru.

A survey conducted by the ccNSO in 2007 among 61 ccTLD registries about
DNSSEC deployment [4] lists various reasons why most of them have not
deployed DNSSEC yet. General lack of resources and waiting for DNSSEC
to mature are the most popular reasons. Low project priority and the fact
that the root zone is not signed yet were the less popular reasons. Three
ccTLD registries already have a DNSSEC test running and are ready for

48

rollout, but are waiting for the root zone to be signed and for the zone
walking issue to be solved.

There is no DNSSEC signature checking among operating system stub re-
solvers yet. A Firefox plugin for DNSSEC signature checking called Drill
Extension is available which would at least provide protection against DNS
spoofing in websites on the end user connection. However, as cache poison-
ing is a much more powerful attack than a direct attack on the end user, the
deployment of DNSSEC still helps increasing DNS security by preventing
cache poisoning between DNSSEC-aware recursors.

5.7 DNSCurve

DNSCurve is new a protocol that was only recently announced by Dan Bern-
stein [3]. Designed as an incompatible alternative to DNSSEC providing
link-level public key protection to DNS packets, it uses 255 bit elliptic curve
Diffie-Hellmann as cryptographic primitive instead of RSA for quicker cre-
ation and verification of signatures while providing more security than 1024
bit RSA. DNSCurve uses the name server’s hostname to store its public key.
As it is manually added on the name server one level above, it is already
known to the verifier.

Currently DNSCurve development focuses on an updated version of dnscache
from djbdns to integrate DNSCurve and on a forwarding service to be im-
plemented which adds DNSCurve security features. The forwarder is run
on the same machine as the resolver but with a different IP. It would allow
using existing name server implementations without changing their zones or
adding key management.

uzdxgmlkx1zj8xsh51zp315k0rw7desgyxqh2sl7g8tjg25ltcvhyw.nytimes.com is
an example of a host name containing its public key. The first subdomain
starts with uzd, is exactly 54 characters long and does not to contain the
characters a, e, i and o to distiguish it from ordinary domain names.

DNSCurve is also meant to add confidentiality to DNS by encrypting re-
quests and replies. It also said to add some protection against denial-of-
service attacks. DNSCurve is supposed to be faster, more secure and easier

49

to deploy and administer than DNSSEC because it only uses existing records
in databases and zonefiles, e.g. for public key storage. It is difficult to verify
these claims because there are no implementations yet.

5.8 DNS Intrusion Detection

Intrusion detection is a means to change behavior of a server when an attack
is underway. This is achieved by monitoring incoming packets, detecting
unusual traffic and changing the servers’ behavior in a pre-specified way
or in a way chosen by the administrator in an unforeseen attack or when
automatic means fail. Many of the means to mitigate an attack are executed
at the cost of performance, so care must be taken.

Methods to detect an attack include:

e Monitoring the number of packets received with wrong transaction ID,
wrong port number or unauthorized content in the additional info sec-
tion

e Monitoring the number of unusually large packets

o Waiting for a second reply to arrive for a single query can detect forged
replies if the authentic replies are not suppressed by the attacker, e.g.
by a simultaneous denial-of-service attack on the authoritative server.

e Monitor the number of NXDOMAIN replies and alert if it is exceedingly
high.

e Reresolving a name after a short delay and checking if the results are
identical is not feasible because there a legitimate reasons for one do-
main to have different IPs, e.g. load balancing.

Methods to apply during an attack:

e Limit data rate for certain senders. This slows attacks down and re-
duces general server load, but can also slow down regular users if the
sender is another authoritative server.

50

e Switching outgoing queries to TCP can make an attack harder because
the attacker has to find a way to spoof the correct 32 bit TCP sequence
number. However, this creates additional traffic. Also, many servers
including root servers do not support TCP packets unless they exceed
512 byte, which is uncommon in most scenarios.

e Limiting data rate for the whole server slows attacks down and reduces
general server load, but will also slow down regular traffic. Because the
attacker probably easily fills all network queues, regular users cannot
reach the server at all. Thus, general rate limiting in attack mode
facilitates a denial-of-service attack and should not be used.

The most popular IDS systems for DNS include snort (GNU public license)
and Microsoft Internet Security and Acceleration Server (proprietary license).

5.9 Conclusion: Entropy vs. Cryptography

Entropy is the random data needed for the reply packet to authenticate
against the resolver. The more entropy is used, the more effort the attacker
needs to succeed in forging a packet. At first, only the transaction ID was
used, which over the years gradually increased entropy from sequential num-
bers to weak random number generators (late 1990s) to cryptographically
strong random number generators (2007). The transaction ID provides 16
bit of entropy by DNS protocol standard.

In 2008, source port randomization was added on most implementations,
adding up to 16 bits of entropy. Source port randomization is limited by
firewalls and general network policies, often delivering just 14 bits.

The deployment of 0x20 would add 3 to 15 bits of entropy depending on the
lenth of the domain name using it and could be deployed within months,
should the draft be approved. Using TCP instead of UDP for all queries
would add another 32 bit of entropy, but has serious network and memory
load side effects.

In a man-in-the-middle-attack scenerio where the attacker controls the chan-
nel (i.e. LAN or weak routing security), all of the above mentioned steps can

51

be circumvented by the attacker without significant effort. Cryptographic
protocols are required to prevent these attacks.

DNSSEC cryptographically authenticates query replys by the use of digital
signatures. This adds entropy with the key length because the attacker would
have to forge signatures. In general at least 1024 bit is used as key length,
which is generally considered to be equally secure as a 80 bit symmetric key.
Thus, an attacker needs another 2™ attempts on average to forge a signature,
which is ample in a race condition. A smarter attacker could try to guess the
private key, which would take equally long but can be done offline. However,
DNSSEC is difficult to deploy in terms of software configuration, security
policies and key management.

DNSCurve is designed to achieve even more goals than DNSSEC, to provide
more cryptograhic security (corresponding to a 127 bit symetric key) and
to be easier to deploy than DNSSEC. Further studies are needed to show if
these claims are true.

52

Chapter 6

Summary

DNS is a quite simple protocol with a huge impact on everyday users’ experi-
ence of the Internet. 13 root servers are indirectly used by 1.4 billion people
to reach 540 million hosts on the Internet. But despite the generally smooth
performance for end users of DNS, its security history is typical for an old
protocol that evolved from the times when all parties on the network were
considered trustworthy to a protocol fit for a global network. The evolu-
tion of the grade of randomness of the transaction ID in many popular DNS
implementations is a didactic play for security researchers. Obviously the im-
portance of the transaction ID was vastly underestimated and it seems that
some implementations were made by developers not aware of security basics,
such as buffer overflow prevention techniques, the importance of nonces and
cryptographically secure pseudo random number generators, even in very
recent times.

As the underdog role of the security-focused DNS implementation djbdns
shows, DNS is a field for power struggles, which has hampered security im-
provements. The lack of consensus about IANA’s operation and the signature
holder of the root zone is another example for this problem.

There were many severe network security bugs discovered this year: An at-
tacker could choose the password length in SNMP, enabling him to guess
as little as one character per password to modify the routers that keep the
Internet together, thereby enabling man-in-the-middle-attacks on a whole

53

new level. The popular Linux distribution Debian contained a weakness
in OpenSSL, generating only 65000 different private keys, which was only
discovered after 18 months of operation - "16 bit RSA/DH" cannot be con-
sidered secure. Even SSH’s forward secrecy was broken. And finally, Kamin-
sky’s DNSRake attack enables home users to poison any DNS cache in less
than 10 seconds.

With network security in general gaining attention because of the high num-
ber of security issues this year and the zone walking issue finally fixed, the
deployment of DNSSEC on a wide basis might finally take off. However,
DNSCurve provides an interesting alternative to DNSSEC which circumvents
many of DNSSEC’s deployment challenges. Yet still, it can’t avoid the root
zone signing controversy and further study needs to be made on DNSCurve,
with DNSSEC being researched since almost ten years. And finally, IPv6 is
waiting to be deployed, which would solve most DNS security issues for good
anyways.

No matter which of these alternatives will make it, when DNS finally gets
fixed by cryptography after almost 25 years of insecure operation, the focus
for both attackers and security researchers will probably shift from design
flaws to implementation errors and cryptographic issues.

54

Bibliography

[1] Dan Bernstein. Notes on *.com wildcards. http://cr.yp.to/djbdns/
com-wildcard.html, November 2002.

[2] Dan Bernstein. The libresolv Security Disaster. http://cr.yp.to/djbdns/
res-disaster.html, November 2002.

[3] Dan Bernstein. DNSCurve: Usable security for DNS. DNSCurve for
DNS software authors. http://www.dnscurve.org/impl.html, 2008.

[4] c¢cNSO. DNSSEC Survey Results. http://www.ccnso.icann.org/surveys/
dnssec-survey-report-2007.pdf, 2007.

[5] D. Atkins and R. Austein of ISC. Threat Analysis of the Domain Name
System (RFC 3833). www.ietf.org/rfc/rfc3833.txt, August 2004.

[6] D. Eastlake of DEC, S. Crocker of Cybercash, and J. Schiller of MIT.
Randomness Recommendations for Security. RFC 1750, http://www.
ietf.org/rfc/rfc1750.txt, December 1994.

[7] Dan Kaminsky of IOActive. Black Ops 2007: Design Reviewing The
Web. http://www.doxpara.com/slides/ DMK BO2K7 Web.ppt, Au-
gust 2007.

[8] Dan Kaminsky of IOActive. It is The End Of The Cache As We Know
It (Black Ops 2008). http://www.doxpara.com /DMK BO2K8.ppt, Au-
gust 2008.

[9] Kelly Jackson Higgins. ’Provider-in-the-Middle Attacks’ Put Major
Websites, Users at Risk. http://www.darkreading.com/document.asp?
doc_id—151497, April 2008.

[10] J. Postel of ISI. Internet Name Server. IEN 116 ftp://ftp.rfc-editor.org/
in-notes/ien/ien116.txt, August 1979.

%)

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and
Dan Boneh of Stanford University. Protecting Browsers from DNS
Rebinding Attacks. http://crypto.stanford.edu/dns/dns-rebinding.pdf,
2007.

Gregg Keizer. Microsoft DNS bug long known, familiar to re-
searchers. Computerworld, http://www.computerworld.com/action/
article.do?command=viewArticleBasic&articleld=9047638, November
2007.

Amit Klein. BIND 8 DNS Cache Poisoning. http://www.trusteer.com/
bind8dns, July-August 2007.

Amit Klein. BIND 9 DNS Cache Poisoning. http://www.trusteer.com/
bind9dns, March-June 2007.

Amit Klein. Microsoft Windows DNS Stub Resolver Cache Poi-
soning. http://www.trusteer.com/files/Microsoft _ Windows _resolver
DNS cache poisoning.pdf, March-May 2007.

O. Kolkman and R. Gieben of NLnet Labs. DNSSEC Operational Prac-
tices. RFC 4641 http://tools.ietf.org/html/rfc4641, September 2006.

Microsoft. Microsoft Security Advisory (935964): Vulnerability in
RPC on Windows DNS Server Could Allow Remote Code Exe-
cution. http://www.microsoft.com/technet/security /advisory/935964.
mspx, April-May 2007.

P. Vixie of ISC and D. Dagon of GaTech. Use of Bit 0x20 in
DNS Labels to Improve Transaction Identity. http://tools.ietf.org/id/
draft-vixie-dnsext-dns0x20-00.txt, March 2008.

University Of California, San Diego. SD Supercomputer Center Re-
searchers Find Unnecessary Traffic Saturating A Key Internet 'Root’
Server. http://www.sciencedaily.com /releases/2003,/01/030124074245.
htm, January 2003.

Duane Wessels and Haven Hash. 2007 Day In The Life DNS Root
Server Analysis. WIDE+CAIDE Workshop No. 8 http://www.caida.
org/workshops/wide/0707/slides/hash.pdf, July 2007.

Michal Zalewski. Strange Attractors and TCP/IP Sequence Number
Analysis. http://lcamtuf.coredump.cx/oldtcp/tepseq.html; April 2001.

56

Eidesstattliche Erklirung:

Hiermit erklédre ich, dass ich die am heutigen Tag eingereichte Master Thesis
selbstindig verfasst und ausschlieflich die angegebenen Quellen verwendet
habe.

Bochum, den

S7

